
Assembling Components with Aspect-Oriented Modeling/Specification*

Fei Cao1, Barrett R. Bryant1, Rajeev R. Raje2, Mikhail Auguston3, Andrew M. Olson2,
Carol C. Burt1

1Department of Computer and Information Sciences

University of Alabama at Birmingham
{caof, bryant, cburt}@cis.uab.edu

2Department of Computer and Information Science

Indiana University Purdue University at Indianapolis
{rraje, aolson}@cs.iupui.edu

3Computer Science Department

Naval Postgraduate School
auguston@cs.nps.navy.mil

Abstract:
Component-Based Software Development (CBSD) offers a cost-effective means of software production
with reduced time-to-market. Integration of heterogeneous components poses a non-trivial challenge in
realizing this vision, which is further complicated in a distributed environment as a result of blurred
functional and non-functional aspect1 representation and management. We propose a two-level approach,
i.e., to apply aspect-oriented component modeling/specification to handle the problem.

Keywords:
Aspect Orientation, Component Modeling/Specification, UniFrame, Weaving

1. Introduction

1.1 Background

Recent development in software component technology enables the production of complex software
systems by assembling off-the-shelf components. This not only boosts productivity attributed to the
reusability of components, but also improves cost-control and maintenance of software systems.
Meanwhile, another hallmark of current software components is the heterogeneity in environment,
language and application over distributed systems.

UniFrame [Raje01] is a framework for seamless interoperation of heterogeneous distributed software
components. It is based on the Unified Meta-component Model (UMM) [Raje00] for describing
components. A Generative Domain Model (GDM) [Czar00] is used to describe the properties of domain
specific components and to elicit the rules for component assembly. Systems constructed by component
composition should meet both functional and non-functional requirements such as the Quality of Service
(QoS) [Brah02]. Towards the realization of the vision of the UniFrame project, an appropriate means for
component modeling/specification is needed, which should be capable of:

* This research is supported by the U. S. Office of Naval Research under the award number N00014-01-1-
0746.

1 In this paper, “non-functional aspect”, “non-functional-property” and “Quality of Service (QoS)” may be
used interchangeably.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
OCT 2003 2. REPORT TYPE

3. DATES COVERED
 00-00-2003 to 00-00-2003

4. TITLE AND SUBTITLE
Assembling Components with Aspect-Oriented Modeling/Specification

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Indiana University/Purdue University,Department of Computer and
Information Sciences,Indianapolis,IN,46202

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Proceedings of UML 2003 Workshop in Software Model Engineering (WiSME). San Francisco, California,
Oct 2003

14. ABSTRACT
Component-Based Software Development (CBSD) offers a cost-effective means of software production
with reduced time-to-market. Integration of heterogeneous components poses a non-trivial challenge in
realizing this vision, which is further complicated in a distributed environment as a result of blurred
functional and non-functional aspect1 representation and management. We propose a two-level approach,
i.e., to apply aspect-oriented component modeling/specification to handle the problem.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

� representing the functional properties (including not only syntactic structure but also semantic
behaviors) and requirements (pre/post condition, dependency, temporal constraints, etc.).

� representing the non-functional properties and requirements [Brah02].
� specifying the heterogeneity in terms of representing domain knowledge, e.g., technology domain,

business domain, etc.

1.2 Current Issues

Assembly of heterogeneous distributed components will require glue/wrapper code to fuse them together.
General practice leverages vendor-specific bridging products or applies hard coding, and both the
functional and non-functional aspects of the assembled system tend to be blurred by this ad hoc treatment.
We have applied Two-Level Grammar (TLG) as a formalism to specify various aspects of components
[Brya02] based on UMM. Meanwhile, it has been brought to our attention such aspects of components as
functional pre/post conditions and non-functional properties crosscut component modules and handling of
these aspects spread across component modules. This poses some problems:
� reduced reusability of components. Component behavior may change in different contexts. The

inter-relationship between components may also change under different business rules. The “Hard-
coded” modeling/specification will be inadequate to capture the dynamics of components and
component representations may have to be revised upon different environments

� blurred representation and management of functional and non-functional aspects of components.
As those aspects are entangled with other aspects of components, reasoning for the integrated
system based on those aspects will be hard to be carried out.

Aspect Orientation [Kicz97] provides a means to capture crosscutting aspects in a modular way with new
language constructs. This makes us believe that augmenting our existent specification approach with aspect
orientation can separate those crosscutting aspects intervening components, loosen the coupling between
components, which will contribute to not only the reusability and evolution of component without changing
the component itself, but also the manageability of component assembly. On the other hand, by using
weaving technology, dynamic concerns can be “glued” into the composition of components. This paper
will investigate the application of aspect orientation in the modeling/specification of components, in
particular, the handling of their exported service and QoS of heterogeneous distributed components in the
context of the UniFrame project.

This paper is organized as follows: Section 2 first gives an analysis of component assembly models.
Section 3 presents our two-level, model-based, aspect-oriented approach for heterogeneous distributed
component representation. Section 4 draws the conclusion.

2 Component Assembly Model Analysis

In [Shaw97], component and connector are proposed as building blocks of software architecture. The
examples of component include clients, servers, databases; the examples of connector include procedure
call, event broadcast, database protocols. The various kinds of combination patterns of component and
connector form the collection of architecture styles.

From the perspective of component assembly, we use the connector concept as an abstraction for
glue/wrapper codes necessary for component assembly, and analyze how the use of this abstraction makes
the assembly process scalable. The approach of removing assembly logic from the component into the
connector can increase the reusability of the component, reduce the complexity and boost maintainability.
Meanwhile, assembly model analysis will contribute to the automation of this process. Based on the
hierarchical relationship between component and connector in the assembly process, the assembly models
can be categorized as follows:

1) the connector and component reside at the same level (Figure 1).
This is the most common and simple assembly model, and conforms to most architecture styles
listed in [Shaw97], such as pipes and filter, and event system. The connector here may be remote

method call, or event/message based communication for client/server architecture. This model is
mostly seen in distributed component assembly.

C1 C2

2) the components are con

The connector acts as
via inversion of contro
package components, s
container providing ex
life cycle management,

3) mixed form of the abov
In this case, componen
derived from the assem
in either (1) or (2). Eac
process in either (1) or

3. Two-level Component

In light of prior assembly ana
assembly by handling the mod
connector) separately: the first l
as non-functional properties [B
Generic Modeling Environme
components and manipulations
the connector module. The asse
automatic fashion using an aspe
process.

2 COM: Component Object Mod
3 EJB: Enterprise Java Beans, h
4 CCM: CORBA® Component M
5 http://java.sun.com/beans/
Figure 1: Component & Connector: Same Level
tained in the connector. Figure 2 provides a COM2 model.

Connector

component

interface

binding

an infras
l, such as
uch as in
tra servi
 persiste

e two ca
t assem
bly of th
h child a
(2).

Modeli

lysis, w
eling of

evel is th
rah02]) i
nt (GM
of the co
mbly of
ct weav

el, http:

ttp://java
odel, ht
Figure 2: Connector as a Container
tructure in the form of framework, which assembles components
 in EJB3, CCM4; or a package, using such way as manifest file to
 JavaBeans5. Also such connector in some cases plays the role as a
ces for the components to leverage, such as security, transaction,
nce.

ses.
bly is comprised of a hierarchical process, the father assembly is
e output of each child assembly process, in the form as described
ssembly process further is derived from their own child assembly

ng/Specification with Aspect Orientation

e propose a two-level approach toward an effort of component
 the component and the specification of their interaction (aka.
e modeling of heterogeneous components (their functional as well
n graphical forms using some advanced CASE tools such as the
E) [GME01]; the specification of inter-relationships between
mponent model are included in the second level, which constitutes
 components for the production of the final system will be in an
er based on the modeling and specification. Figure 3 illustrates the

//www.microsoft.com/com.
.sun.com/products/ejb
tp://www.omg.org/cgi-bin/doc?orbos/99-07-01

3.1 Level 1: Component Modeling

One of the Object Management Group (OMG) 6 initiatives is Model Driven Architecture (MDA®)
[OMG01], i.e., by reverse engineering legacy systems and Commercial-Off-The-Shelf (COTS)
components, software can be transformed into Platform Independent Models (PIMs). PIMs, in turn, will be
mapped to Platform Specific Models (PSMs), such as CORBA7, EJB, SOAP8 and .NET9. In this way,
legacy systems

Level 2:specification

Level 1:model

and CO
vision
model
we nee
for bus
concer
modeli
affecte
represe
represe
we ma

6 http:/
7 http:/
8 SOAP
9 http:/
Synthesized Component Description Language

Figure 3: Process of Aspect-Oriented Co

TS can be reintegrated into new platforms e
here by representing the software component
envisioned here is derived by creating meta-mo
d to formulate the building blocks for describi
iness and technology domains [Zhao03]. But t
ns of some organization such as OMG. Addi
ng level to represent the join point [Kicz97]
d by a particular crosscutting concern. In an AO
nted by referring to the syntactical construct
ntation of join points in UML models by mar
y denote the join points by referring to the me

/www.omg.org
/www.CORBA.org
: Simple Object Access Protocol, http://www.w

/www.microsoft.com/net
Functional and Non-Functional
Aspect Specification

 Component Virtual Machine/ Inference Engine
Simulation
weaver
Code Generation
 mponent Modeling/Specification

fficiently and cost-effectively. We embrace the same
s with a model-based approach. However, such PIM
dels specific to component modeling. In other words,
ng component models. This includes the meta-model
hese are out of our scope here, which are actually the
tionally, there should be a means in the component
 in a component, which denotes the points that are

P language such as AspectJ [Kicz01], join points are
s of the base program source. [Stei02] explores the
king affected model elements using UML tags. Here
ta-information of model constructs. In that sense the

3.org/TR/SOAP

join points here also represent domain knowledge and can serve as query parameters in search of specific
components.

As is illustrated in the diagram, the first-level model will be transformed into the second level using a
model-based approach consistent with the vision of MDA. This can be achieved easily using the meta-
model information of the component models. In GME [GME01], this is realized by using the Builder
Object Network (BON) framework for building interpreters, which traverses objects in the model tree by
calling methods within the BON API and generates the Component Description Language (CDL), which
also includes associated meta-model information to be used as the anchor of the join point.

3.2 Level 2: Component Specification

This level involves the creation of an Aspect Specification Language (ASL10) for describing crosscutting
concerns in a separate way. Also a weaver is built to weave the ASL with CDL to generate targeted
executable specification of components.

3.2.1 Constructs of ASL
In AspectJ [Kicz01], the aspect specification includes three elements: pointcuts to pinpoint the affected
location of applications; advice to describe the actions that are applied to the pointcuts; the condition which
governs how/when to apply advice to pointcuts using “before”, “after”, etc. To generalize for ASL, we
need a means to specify:
1) join points.
2) behavior specification describing the actions to be performed.
3) policy on how the behavior is applied to join points.

(1) is as mentioned in 3.1, and is supposed to be specified in CDL. (2) and (3) will be provided in ASL.

3.2.2 Concerns Involved
This part will eventually evolve into a catalog of concerns to be handled in heterogeneous distributed
component specification. For now the most distinct concerns involved will be:
1) gluing/wrapping of components.

The gluing/wrapping of components is generally influenced by such aspects as platform and
distribution. The component assembly process will be subject to evolution if components are
deployed on a different platform/location. This dynamism can be well embraced by policy description
in ASL. The pre/post condition as well as other constraint checking necessitated for the components
to perform interaction (here, assembly) can be represented in the behavior specification under the
corresponding policy. Obviously here the join points are contained in the involved components to be
assembled.

2) QoS measurement.
We also embed the non-functional aspects such as QoS measurement at the higher level specification
of ASL, which will contribute to the measurement of QoS of the generated system at run-time. This is
especially desired in a dynamic distributed environment, where a large amount of existent
components may be exported for use, overall system QoS serving as the criteria to the filtering of
service offerings among peer components. In [Augu95], event grammar is proposed to perform the
system testing. We believe the introduction of the aspect-oriented approach will provide support to
this effort, i.e., we can treat the QoS probing code as a behavior specification; the policy will govern
how the probing code will be called at join points for dynamic measuring of QoS. The probing code
will not be manually embedded in the points of interest, but rather using the weaver for dynamic
instrumentation.

3.2.3 Simple Assembly Example using Aspect Orientation
To help clarify the aforementioned concepts, we give a simple example demonstrating how aspect
orientation can be applied to component assembly. The ideas are adapted from aspectual components
[Lieb99], in which aspects are decoupled from the base program by being defined as a generic aspectual

10 Note this is nothing to do with the Action Semantics Language of OMG.

component, which is instantiated later over a concrete data-model. In this way, an aspect definition can be
reused. Here we define aspectual component by capturing join points at the meta-model level of
components.

Assume the component A is a banking domain client component hosted on Java RMI requesting some
banking service from some server side. Below is the partial specification of its CDL:

A.0 Component A
A.1 Bankoperation:: Service.
A.2 Bank::BusinessDomain.
A.3 Platform::TechDomain.
A.4 Platform= “RMI”.
A.5 Requires Bankoperations .
A.6 end Component A.

Note that right hand side of “::” denotes the meta-type of the left hand side. Line A.4 and A.5 are hyper-
rules. Meta-type and hyper-rule are Two-Level Grammar notations. For more details of TLG, see [Brya02].

The above specification will be translated into a corresponding aspectual component:

B.0 aspect A
B.1 Bankoperation:: Service.
B.2 Bank::BusinessDomain.
B.3 expect Bankoperations.
B.4 expect wrap Argument. //usage interface
B.5 replace Bankoperation: //modification interface
B.6 if expected().getComponent().getPlatform()== “CORBA”
B.7 then return expected().wrap(“RMI”).
B.8 end aspect A

Note those lines prefixed by expect denote operation signatures that are expected to be supplied with
advice. In that sense the operation signatures here correspond to the join points in AOP. In the proposed
approach here we only use meta-level types for the operation signature definition. Also the above expected
keyword denotes something to be bound to join points. In line B.3, Bankoperation itself is meta-type in the
banking business domain. Expected operations are either used (usage interface) or modified (modification
interface, preceded with replace) in the aspectual component definition. For details please see [Lieb99].
Also lines B.6-B.7 provide advice (reimplementation) for the associated operations to be specified in the
connector part below.

Assume the component B is a banking domain server component implemented in CORBA providing some
banking services.

C.0 Component B.
C.1 Withdraw, Deposit:: Service;Port.
C.2 Bank::Domain.
C.3 Platform::TechDomain .
C.4 Platform= “CORBA”.
C.5 end Component B.

Note in line C.1, the two types denoted in the right hand side of “::” means both withdraw and deposit are
not Services, but also Ports, which means they are component services offered to external components.

The following is an ASL specification for component assembly.

D.0 connector A-B
D.1 Bankoperation=Withdraw, Deposit. //join points
D.2 wrap(Argument): if (Argument.getname==”RMI”)
D.3 {
D.4 //provide wrapping specification for

D.5 //RMI-CORBA inter-operation
D.6 }
D.7 end connector A-B

Note that lines D.2-D.6 further implement the advice part for the join points (here, Withdraw and Deposit
operation). The body of wrap is ignored without loss of generality.

From the example illustrated in this section, we can see the interactions of two components can be
separated by being handled in a module (here in the aspectual component definition, i.e. the “aspect A”
module). Consequently the assembly process can be implemented by using a weaver to weave advice
together with component specifications. As we can see in the body of “aspect A”, it is straightforward for
us to apply other concerns in between, e.g., we can call expected().precondition() wherever applicable in
the replace function body to enforce some preconditions.

3.3 System-Level Simulation

We are investigating such program transformation tool as DMS11 for building a weaver to weave CDL and
ASL together, the output of which will be fed into the simulation phase to validate the functional system
behavior against requirements before implementation code is generated and deployed. This simulation may
be carried out by building a component virtual machine [Ducl02], which serves as an interpreter to interpret
the weaved specifications; or by building rule sets based on requirement and then use some inference
engine to validate the functional requirements. In this way, the assembled system will be functionally sound
at an early phase. On the other hand, the generated applications, as they are probed with non-functional
aspect related codes, are amenable to be benchmarked over the specific QoS parameters [Brah02] in the
system deployment time.

4. Summary and Future Work

We have presented a two-level approach for handling the crosscutting concerns of functional/non-
functional concerns in integrating heterogeneous distributed components. This approach has a close tie to
MDA in the sense that we leverage component modeling at the first level and then map the component
models into the CDL in the second level. The CDL and ASL will be weaved together to generate the
executable specification for system simulation. The approach also applies to model weaving in MDA.

We have applied modeling techniques for enriching semantics of Web Services and to generate
semantically enriched Web Service Description Language (WSDL) [Cao03]. We have also prototyped
CDL for component assembly [Cao02]. Future efforts will be to apply modeling experiences to describing
the semantics of component cases of some specific domain, and to build ASL together with its associated
weaver for the synthesis of executable specifications.

References:

 [Augu95] M. Auguston. Program Behavior Model Based on Event Grammar and its Application for
Debugging Automation. Proceedings of the 2nd International Workshop on Automated and Algorithmic
Debugging, pp. 277-291, 1995.

[Brah02] G. J. Brahnmath, R. R. Raje, A. M. Olson, M. Auguston, B. R. Bryant, and C. C. Burt. A Quality
of Service Catalog for Software Components. Proceedings of (SE)2 2002, the Southeastern Software
Engineering Conference, pp. 513-520, 2002.

11DMS: Design Maintain SystemTM, http://www.semdesigns.com/

[Brya02] B. R. Bryant, B.-S. Lee. Two-Level Grammar as an Object-Oriented Requirements Specification
Language. Proceedings of 35th Hawaii Int. Conf. System Sciences, 2002,
http://www.hicss.hawaii.edu/HICSS_35/HICSSpapers/PDFdocuments/STDSL01.pdf.

[Cao02] F. Cao, B. R. Bryant, R. R. Raje, M. Auguston, A. M. Olson, C. C. Burt. Component
Specification and Wrapper/Glue Code Generation with Two-Level Grammar using Domain Specific
Knowledge. Proceedings of 4th International Conference on Formal Engineering Methods (ICFEM'02),
LNCS 2495, Springer-Verlag, pp. 103-107, 2002.

[Cao03] F. Cao, B. R. Bryant, C. C. Burt, J. G. Gray, R. R. Raje, A. M. Olson, M. Auguston. Modeling
Web Services: Toward System Integration in UniFrame, to appear in Proceedings of 7th World Conference
on Integrated Design and Process Technology (IDPT'03), 2003.

[Czar00] K. Czarnecki, U.W. Eisenecker. Generative Programming: Methods, Tools, and Applications,
Addison-Wesley, 2000.

[Ducl02] F. Duclos, J. Estublier, P. Morat. Describing and Using Non Functional Aspects in Component
Based Applications. Proceedings of Second International Conference on Aspect-Oriented Software
Development, AOSD’02, 2002.

[GME01] GME 2000 User's Manual, Version 2.0, ISIS, Vanderbilt University, 2001.

[Kicz97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-Oriented Programming. Proceedings of European Conference on Object-Oriented Programming
(ECOOP), LNCS 1241, Springer-Verlag, pp. 220-242, 1997.

[Kicz01] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold An Overview of
AspectJ. Proceedings of European Conference on Object-Oriented Programming (ECOOP), LNCS 2072,
Springer-Verlag, pp.327-353, 2001.

[Lieb99] K. Lieberherr, D. Lorenz, M. Mezini. Programming with Aspectual Components. Technical
Report, NU-CCS-99-01, 1999, http://www.ccs.neu.edu/research/demeter/papers/aspectual-
comps/aspectual.ps.

[OMG01] Object Management Group (OMG). Model Driven Architecture: A Technical Perspective.
Technical Report. Document # ormsc/2001-070-1, Framingham, MA, Object Management Group, 2001.

[Raje00] R. R. Raje. UMM: Unified Meta-object Model for Open Distributed Systems. Proceedings of
ICA3PP, 4th IEEE Int. Conf. Algorithms and Architecture for Parallel Processing, pp. 454-465, 2001.

[Raje01] R. R. Raje, B. R. Bryant, M. Auguston, A. M. Olson, C. C. Burt. A Unified Approach for the
Integration of Distributed Heterogeneous Software Components. Proceedings of Monterey Workshop
Engineering Automation for Software Intensive System Integration, pp. 109-119, 2001.

[Shaw96] M. Shaw, D. Garlan. Software Architecture: Perspectives on an Emerging Discipline, Prentice
Hall, 1996.

[Stei02] D. Stein, S. Hanenberg and R. Unland. On Representing Join Points in the UML. Aspect
Modeling with UML Workshop at the Fifth International Conference on the Unified Modeling Language
and its Applications, 2002, http://www-stud.uni-essen.de/~sw0136/wissensArbeiten/
UML02Workshop.pdf.

[Zhao03] W. Zhao, B. R. Bryant, C. C. Burt, J. G. Gray, R. R. Raje, A. M. Olson, M. Auguston. A
Generative and Model Driven Framework for Automated Software Product Generation. Proceedings of
CBSE 6, the 6th Workshop on Component-Based Software Engineering: Automated Reasoning and
Prediction, 2003, http://www.csse.monash.edu.au/~hws/cgi-bin/CBSE6/Proceedings/papersfinal/p31.pdf.

	{rraje, aolson}@cs.iupui.edu

